80 research outputs found

    Rigid continuation paths I. Quasilinear average complexity for solving polynomial systems

    Get PDF
    How many operations do we need on the average to compute an approximate root of a random Gaussian polynomial system? Beyond Smale's 17th problem that asked whether a polynomial bound is possible, we prove a quasi-optimal bound (input size)1+o(1)\text{(input size)}^{1+o(1)}. This improves upon the previously known (input size)32+o(1)\text{(input size)}^{\frac32 +o(1)} bound. The new algorithm relies on numerical continuation along \emph{rigid continuation paths}. The central idea is to consider rigid motions of the equations rather than line segments in the linear space of all polynomial systems. This leads to a better average condition number and allows for bigger steps. We show that on the average, we can compute one approximate root of a random Gaussian polynomial system of~nn equations of degree at most DD in n+1n+1 homogeneous variables with O(n5D2)O(n^5 D^2) continuation steps. This is a decisive improvement over previous bounds that prove no better than 2min⁥(n,D)\sqrt{2}^{\min(n, D)} continuation steps on the average

    Computing periods of rational integrals

    Get PDF
    A period of a rational integral is the result of integrating, with respect to one or several variables, a rational function over a closed path. This work focuses particularly on periods depending on a parameter: in this case the period under consideration satisfies a linear differential equation, the Picard-Fuchs equation. I give a reduction algorithm that extends the Griffiths-Dwork reduction and apply it to the computation of Picard-Fuchs equations. The resulting algorithm is elementary and has been successfully applied to problems that were previously out of reach.Comment: To appear in Math. comp. Supplementary material at http://pierre.lairez.fr/supp/periods

    A deterministic algorithm to compute approximate roots of polynomial systems in polynomial average time

    Full text link
    We describe a deterministic algorithm that computes an approximate root of n complex polynomial equations in n unknowns in average polynomial time with respect to the size of the input, in the Blum-Shub-Smale model with square root. It rests upon a derandomization of an algorithm of Beltr\'an and Pardo and gives a deterministic affirmative answer to Smale's 17th problem. The main idea is to make use of the randomness contained in the input itself

    The boundary of the orbit of the 3 by 3 determinant polynomial

    Get PDF
    We consider the 3 by 3 determinant polynomial and we describe the limit points of the set of all polynomials obtained from the determinant polynomial by linear change of variables. This answers a question of J. M. Landsberg

    Resolution except for minimal singularities II. The case of four variables

    Get PDF
    In this sequel to Resolution except for minimal singularities I, we find the smallest class of singularities in four variables with which we necessarily end up if we resolve singularities except for normal crossings. The main new feature is a characterization of singularities in four variables which occur as limits of triple normal crossings singularities, and which cannot be eliminated by a birational morphism that avoids blowing up normal crossings singularities.Comment: 23 pages. Section 3 revised. Results unchange

    Computing the homology of basic semialgebraic sets in weak exponential time

    Get PDF
    We describe and analyze an algorithm for computing the homology (Betti numbers and torsion coefficients) of basic semialgebraic sets which works in weak exponential time. That is, out of a set of exponentially small measure in the space of data the cost of the algorithm is exponential in the size of the data. All algorithms previously proposed for this problem have a complexity which is doubly exponential (and this is so for almost all data)

    Axioms for a theory of signature bases

    Full text link
    Twenty years after the discovery of the F5 algorithm, Gr\"obner bases with signatures are still challenging to understand and to adapt to different settings. This contrasts with Buchberger's algorithm, which we can bend in many directions keeping correctness and termination obvious. I propose an axiomatic approach to Gr\"obner bases with signatures with the purpose of uncoupling the theory and the algorithms, and giving general results applicable in many different settings (e.g. Gr\"obner for submodules, F4-style reduction, noncommutative rings, non-Noetherian settings, etc.)

    Algorithms for minimal Picard-Fuchs operators of Feynman integrals

    Full text link
    In even space-time dimensions the multi-loop Feynman integrals are integrals of rational function in projective space. By using an algorithm that extends the Griffiths--Dwork reduction for the case of projective hypersurfaces with singularities, we derive Fuchsian linear differential equations, the Picard--Fuchs equations, with respect to kinematic parameters for a large class of massive multi-loop Feynman integrals. With this approach we obtain the differential operator for Feynman integrals to high multiplicities and high loop orders. Using recent factorisation algorithms we give the minimal order differential operator in most of the cases studied in this paper. Amongst our results are that the order of Picard--Fuchs operator for the generic massive two-point n−1n-1-loop sunset integral in two-dimensions is 2n−(n+1⌊n+12⌋)2^{n}-\binom{n+1}{\left\lfloor \frac{n+1}{2}\right\rfloor } supporting the conjecture that the sunset Feynman integrals are relative periods of Calabi--Yau of dimensions n−2n-2. We have checked this explicitly till six loops. As well, we obtain a particular Picard--Fuchs operator of order 11 for the massive five-point tardigrade non-planar two-loop integral in four dimensions for generic mass and kinematic configurations, suggesting that it arises from K3K3 surface with Picard number 11. We determine as well Picard--Fuchs operators of two-loop graphs with various multiplicities in four dimensions, finding Fuchsian differential operators with either Liouvillian or elliptic solutions.Comment: 57 pages. Results for differential operators are on the repository : https://github.com/pierrevanhove/PicardFuchs#readm

    Computing the Chow variety of quadratic space curves

    Full text link
    Quadrics in the Grassmannian of lines in 3-space form a 19-dimensional projective space. We study the subvariety of coisotropic hypersurfaces. Following Gel'fand, Kapranov and Zelevinsky, it decomposes into Chow forms of plane conics, Chow forms of pairs of lines, and Hurwitz forms of quadric surfaces. We compute the ideals of these loci

    Effective homology and periods of complex projective hypersurfaces

    Full text link
    We provide an algorithm to compute an effective description of the homology of complex projective hypersurfaces relying on Picard-Lefschetz theory. Next, we use this description to compute high-precision numerical approximations of the periods of the hypersurface. This is an improvement over existing algorithms as this new method allows for the computation of periods of smooth quartic surfaces in an hour on a laptop, which could not be attained with previous methods. The general theory presented in this paper can be generalised to varieties other than just hypersurfaces, such as elliptic fibrations as showcased on an example coming from Feynman graphs. Our algorithm comes with a SageMath implementation.Comment: 35 page
    • 

    corecore